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Some Exact Solutions for Solute Transport Through Soils
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This paper presents several exact and approximate analytical solutions of the equations describing
convective-dispersive solute transport through large cylindrical macropores with simultaneous radijal
diffusion from the larger pores into the surrounding soil matrix. Adsorption effects were included
through the introduction of linear isotherms for both the macropore region and the soil bulk matrix. In
one formulation the macropores are surrounded by cylindrical soil mantles of finite thickness. Another

formulation considers diffusion from a single cylindrical macropore into a radially infinite soil system.
A relatively simple but very accurate approximate solution that ignores dispersion in the macropore
region is also derived. The various analytical solutions in this paper can be used to calculate temporal
and spatial concentration distributions in the macropore system. In addition, approximate solutions
are presented for the radial concentration distribution within the adjacent soil matrix. By means of an
example, it is demonstrated that at early times, little accuracy is lost when the radially finite soil mantle

is replaced by an infinite system.

INTRODUCTION

Large macropores can significantly influence the rate of
water and solute movement in field soils, especially during
(but not necessarily limited to) conditions near saturation.
Experimental evidence of these effects has been documented
in various review articles [Thomas and Phillips, 1979;
Bouma, 1981; Beven and German, 1982; Wierenga, 1982].
Recently, a number of theoretical models for macropore
transport have been introduced. Conceptually, these models
can be separated conveniently into two broad groups.

In one group of models, solute transport is described more
or less from a microscopic point of view. In these models the
bulk of the chemical is assumed to be transported through a
single and well-defined pore or crack of known geometry, or
through the interaggregate voids between well-defined ag-
.gregates. In addition, diffusion-type equations are used to
describe the transfer of solute from the larger pores into the
bulk soil matrix. Examples of this approach using analytical
solutions are given by Rasmuson and Neretnieks [1980,
1981] for spherical aggregates and by Skopp and Warrick
[1974], Tang et al. {19811, and Sudicky and Frind [1982] for
rectangular voids. Similar numerical models, applicable to
transport through rectangular voids with simultaneous ma-
trix diffusion, were formulated by Scotter [1978] and by
Grisak and Pickens [1980a). Scotter [1978] also formulated
an approximate numerical model for transport through cylin-
drical macropores. Drummond and McNabb [1972] describe
a conceptually similar model applicable to heat flow in
fractured media containing either rectangular or cylindrical
fissures.
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In another group of models the exact geometry of the
aggregates, or of the voids between them is not considered
explicitly; instead, the various-sized cracks and interaggre-
gate pores are lumped together and treated more or less from
an empirical and macroscopic point of view. For that pur-
pose, the liquid phase is divided into two regions: one region
applies to the larger pores and is characterized by a relative-
ly high average pore water velocity, while the other region
applies to the bulk matrix and has a relatively low or zero
flow velocity. Solute exchange between the two liquid
regions, if present, is described with a quasi-empirical first-
order rate expression. Analytical models of this type, here
conveniently called ‘‘mobile-immobile”’ type transport mod-
els, are described by Coats and Smith [1964], Villermaux
and van Swaaij [1969], van Genuchten and Wierenga [1976],
Gaudet et al. [1977], and Skopp et al. [1981], among others.

Mathematically, the mobile-immobile models of the sec-
ond group are far less complicated than the more exact
models of the first group. Unfortunately, it has been recog-
nized that most parameters in these mobile-immobile type
models are extremely difficult to estimate by means of
independent measurements [Rao er al., 1979]. Generally,
elaborate curve-fitting methods [van Genuchten, 1981] are
needed to estimate the parameters from observed concentra-
tion distributions, a problem that raises questions, not only
with respect to parameter uniqueness and model verification
[Davidson et al., 1980], but also with respect to the useful-
ness of these models in ultimately predicting solute transport
in structured field soils. Hence methods to _estimate the
coefficients from measurable soil parameters are sorely
needed. A first attempt to do this for soils made up of
spherical aggregates was carried out by Rao et al. [1980a].

"The transport models described in this paper form part of
the first group. Several exact and approximate analytical
solutions are presented that describe solute transport

335



336 VAN GENUCHTEN ET AL.: MACROPORE SOLUTE TRANSPORT

| 2a

|
]
2b
Ry
f
Zy

Schematic picture of a porous medium with a cylindrical
macropore.

Fig. 1.

through well-defined cylindrical macropores with simulta-
neous diffusion from the larger pores into the surrounding
soil matrix. The formulations used here are very similar to
those described by Scotrer [ 1978], except that the transport
equations will be generalized somewhat and solved analyti-
cally. Most of the solutions apply to concentration distribu-
tions in the macropore system: In addition, two approximate
solutions are presented that give the radial concentration
distribution within the bulk soil matrix itself. '

GOVERNING EQUATIONS

Consider a soil that contains a large number of equally
spaced, continuous and cylindrical macropores. The pore
has a radius a and is surrounded by a cylindrical soil mantle
of radius b (Figure 1). The effective value of b is [Scotter,
1978}

b = (mm,)""? (1)

where n,, is the number of pores per unit cross-sectional area
perpendicular to the transport direction. The macropores
have a local volumetric water content ¢, while the bulk
matrix has a water content of §,. When the soil is complétely
saturated and for well-defined macropores with smooth
surfaces, 6 = 1. However, because of irregular surfaces,
local obstructions in the macropore system, or partial desa-
turation, ¢ generally will be somewhat less than 1, even
when the soil is seemingly at saturation. If we denote the
volume fraction of macropores in a unit volume of soil by V,
(= a*/b? and that of the bulk soil matrix by V, = (1 — vy,
then the total water content 6 is

0=V + V.8, 2

We can also define a mobile (macropore) water content 8,
and an immobile (soil matrix) water content 8,,, such that

0=20,+ 6, (3)

where 6,, = Vibrand 6, = V,6,. When the soil is saturated,
6., and 6,,, represent the macropore and micropore porosi-
ties, respectively. Dividing (3) by 6, we get

1 =6,/0+ 6,/6=d,+ dm (4)

Hence ¢, and ¢, are those fractions of the total water
content that are associated with the macropore and micro-
pore regions, respectively.

We will make the assumption that transverse diffusion/
dispersion processes in the macropore liquid phase are so
pronounced that no cross-sectional concentration gradients

are present in this phase. In addition, we assume that
convective transport within the micropores of the bulk
matrix can be ignored. Without adsorption the general
equation for solute transport in the macropore system is then
[Vachaud et al., 1976; Gaudet et al., 1977; van Genuchten
and Cleary, 1979; Rao et al., 19805]

aC
617‘1“+ Oim“: mDm—az——' mum_azl (5)
O0=r=a

where C,, and C,, represent the average concentrations in
the mobile and immobile liquid phases, respectively, D,, is
the dispersion coefficient, v,, is the average pore water
velocity of the macropore region, ¢ is time, and z is distance.
The macropore water velocity is given by

U = qlO,, (6)

where ¢ is the volumetric flux density. Transport equations
similar to (5) but limited to saturated conditions are dis-
cussed by Coats and Smith [1964], Bennett and Goodridge
[1970], and Passioura [1971], among many others. The
second term of (5) represents a sink term that accounts for
solute accumulation in the micropore liquid phase. The
average concentration C;, of that phase is

2 b
Cimlz, t) = Pr fu rClz, r, t) dr 7

where C, is the local concentration in the bulk soil matrix.
Solute diffusion in this part of the soil is described by the
cylindrical diffusion equation:

aCu » Du d (:)C(,
—=——r a<r=b 8

at r or ar

where D, is the soil matrix molecular or ionic diffusion
coefficient. The transport equations above are augmented
with the auxiliary requirements that concentrations must be
continuous at the macropore walls,

Cplz, ) = Cylz, a, 1) )

and that no diffusion takes place across the outer surface (r
= b) of the cylindrical soil mantle surrounding the macro-
pore,

(0C.lan(z, b, ) = 0 (10)

Equations (5)-(10) describe in mathematical terms convec-
tive-dispersive transport of nonadsorbed chemicals through
the larger macropores, with simultaneous diffusion into a
finite cylindrical soil mantle adjacent to these pores. The
equations must be modified when the chemical is also
adsorbed by the solid phase.

Adsorption can be included in one of several ways. The
simplest case arises when adsorption is limited only to the
bulk soil matrix, while no adsorption occurs in the macro-
pore region. Because the internal surface area of the soil
matrix is much larger than the surface area of the macropore
walls, such an assumption may seem reasonable at first.
However, macropore walls frequently are coated with highly
reactive materials, for example, with aluminum and iron
oxides or with fine clay particles. These materials are in
immediate contact with the macropore mobile liquid phase,
and their presence could lead to a significant reduction in the
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apparent solute velocity in the macropores, independently of
what happens inside the bulk soil matrix.

The problem now becomes how to include adsorption in
the macropore region. One possible approach is to include in
the term 4C,/dt of (5) a *‘face retardation factor’ that is
proportional to the surface area of the macropore walls
[Freeze and Cherry, 1979; Tang et al., 1981]. This approach
requires the measurement of the surface area of the macro-
pore walls and some type of equivalent adsorption coeffi-
cient, both of which are not easily obtained by means of
independent experiments, especially for irregular macropore
systems.

A different approach would be to divide, on a mass basis,
the adsorption sites into two fractions, one fraction (f,,) that
is associated and in close contact with the macropore liquid
phase and another fraction (1 — f,,) associated with the bulk
matrix. For this purpose, let us first redefine (5) for an
adsorbing system in the same way as was done by van
Genuchten and Wierenga [1976]:

aC,, A aC,-m 3Sim
6, — + — + Oy, ——
'm ot Pm at im ot P:m ar
3*C,y aC,,
= ‘9mDm > emvm (11)
Z

where S, and §,,, are the adsorbed concentrations of the
macropore and micropore regions, respectively, and where
pm and py,, are the bulk densities (per unit total volume bulk
soil) of these two regions such that

P = Pm + Pim (12)

in which p represents the total bulk density of the soil.
Equation (12) is analogous to (3) for the water content:

P = prf Pim = V{lp(l (13)

where prand p, are the local bulk densities of the macropore
and micropore soil regions, respectively (i.e., per unit vol-
ume macropore and unit volume soil matrix, respectively).
Again, for a system containing well-defined cylindrical ma-
cropores with smooth and inert walls, pr=20.

Similarly to (7), S, is given by

2 b
Sim(z, 1) = e f rSdz, r, 1) dr (14)
4 |,

1

Diffusion in the soil matrix is now described by

a5, 1 0 aC,
+p—=6D,— —|r— (135)
at at r or ar

0(1 a = a~ra

a<r=b

We assume linear and reversible equilibrium adsorption in
both soil regions:

Sm = kmCm Sa = k(IC(I Sm = kimCim (16)
where k,, and k, are the appropriate distribution coefficients.
From (9) and (14) it follows immediately that ;,, = k,. The
total distribution coefficient & is simply a weighted average
of k,, and k,,:

pk = pmkm + pimkim (17)
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Let
T = Pkl pk (18)

Hence f,, is the mass fraction of the adsorbed concentration
that equilibrates with the macropore liquid phase. This
fraction not only accounts for those adsorption sites that are
in immediate contact with the mobile liquid phase, but also
considers the fact that the reactivity of macropore walls may
differ from that of the internal surfaces. Experimentally, it is
probably difficult to distinguish between these two phenome-
na. Note that p,, = f,p only if k = &, = = Kkim. In general,
however, we have

= fmpk = (1~ fn)pk (19)

Using the relations above, we can eliminate Snand §;, from
(11) and (15):

Prkm

pl"ﬂ im —

aC,,, lm
3°Cop 3C,,
= ngm —_T - gmUm (20)
0z 0z
aC, 1 o aC,
{0(1 + p(lka) - = ouDa ——\r (21)
ot r or ar
Define the following retardation factors:
Rm =1+ fmpk/gm Rim =1+ (l - frr1)pk/0in1 (22(1)
R, =1+ pki6, R =1+ pkio (22b)

where R is the total retardation factor of the soil system.
Note that

GmRm + 0in1Rin1 = 6R (23)

while one may also verify that R, = R,. Substituting (22a)

and (225) into (20) and (21) gives

ac,, ac,,

3’C, aC,,
T+ Oy —— = 0Dy
at

ngm ‘3—22— - Omvm -

24

aCu Da d aC(I
—_—=——|r—
ot roor ar

Equations (24) and (25) can be applied also to the situation
where the mobile retardation factor R, is defined per unit
surface area of the macropores (see, for example, Tang et al.
[1981)).

For subsequent analysis it is more convenient to express

the governing equations in dimensionless form. For that
purpose, define the following dimensionless variables:

Rim (25)

T = qt/6L (26a)
Z=z/L (26b)
P, = v,LID, X))
{=rla (28a)
{o = bla (28h)

D,6;,L D,6L
"T @40 - PR R, 2
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B = 0,R,/0R (29b)
Cm - Ci Cu - Ci Cim - Ci

Cm = Cqy = Cim = ————— (30)
Co - G G- G Co - G

where T is the number of pore volumes leached through a
soil profile (or soil column) of depth L, P, is the Peclet
number, C; is the initial concentration, and Cy is the input
concentration. Both C; and C, are assumed to be constant.
With (26)—(30) the dimensionless transport equations be-
come :

BREM L prlm L e den
P T P, 322 oz G

0=(=1

?,Ci = li aC(, 1 < <
T { ol L e (=10 (32)
2 o

im = T, a d 3
c éoz‘lfl Gea dL (33)
cnlZ, T) = c(Z,1, D) (34)
(8cnldONZ, Lo, T) = 0 (35)

The transport model will be solved for a dimensionless initial
concentration of zero,

CnlZ,0) = ¢ (Z,(,0) =0 (36)
a semi-infinite soil profile,
(3¢ nl3Z) (0, T) = 0 (37)

and for two different boundary conditions at the soil surface:
either a first-type (or concentration-type) boundary condi-
tion of the form

(0, T) =1

or a third-type (or flux-type) boundary condition of the form

I dc,
Cpp — T ——
P, doZ

The solutions are obtained by means of Laplace transforms:

(38a)

=1
Z=0

(386)

&Z, s) = f exp (~sT)e(Z, T) dT (39)
(¢}

where s is the Laplace transform variable and ¢ is the
transform of ¢ with respect to T.

ANALYTICAL SOLUTIONS

First-Type Input Boundary Condition

First, the analytical solution for boundary condition (38a)
will be derived. Taking the Laplace transform of (32) and
using initial condition (36), we obtain

d*, tdé, s
7 ——=0
d¢ L de v
which has a general solution of the form

éa = CII()(wC) + CZKO(wC)

(40)

(41

where

w = (s/p"? (42)

C, and C, in (41) are constants that must be determined from
boundary conditions (34) and (35). Taking the Laplace
transforms of these boundary conditions and noting that

dé,.
E = w[C11|(w§) - CZKI(U)OJ 43)
leads to

o DeDK(wle) + Ii(wl)Ke{wl) .
Cq = Cm (44)
T DK (0l) + I/(0l)K(w)

Substituting (44) into the Laplace transform of (33) and
integrating leads to

_ 26,M(w) 45
w(l* — DN(w) )

where
M(w) = I(wl)K (w) — I;(0)K (wly)

Nw) = Iw)K (wlg) + I|(0lo)Ko(w)

(46a)
(460)

Taking the Laplace transform of (31) subject to initial
condition (36) and substituting (45) in the resulting expres-
sion gives

d%,, dé,, 25(1 — BRM(w) | _
T2 m“"Pm S.BR+ 2 Cm =
dz dzZ o(lo” — DN(w)
47
which must be solved subject to
(dé,JdZ)(=, s) = 0 ' (48a)
0, 5) = s © (48b)
The solution for ¢,, is
1
Em(Z, 5) = —exp 3P, Z — ZQ(s)] (49)
s
where
2P, (y5)"(1 — BRM(w) |12
) = |19, + sprp, + 2n00 0~ PRM()
&” — DN(w)
w= (/P (50)

Equation (49) is the Laplace transform solution for the
concentration in the macropore liquid phase. The inverse of
(49) is

1 atix
(2, T) = — j exp (sDéN(Z, s) ds
2771 a—ix
WuZ) [0
= M f —exp [sT ~ ZQ(s)] ds (51)
27Ti a—ix 5

From (46b) and (50) it is apparent that a number of singulari-
ties are present in (50). Following methods similar to those
used by Rosen [1952] and Rasmuson and Neretnieks [1980],
it is readily demonstrated that the term N in Q(s) has an
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infinite number of zeros along the negative real axis. These  where
points are located at . .
My(\) = Ber, ({oA) Ker; (\) — Bei; ({o)) Kei; (A)
§ = ")’Unz n = 1’ 2a tt (52) : . .
.~ Ker ({eA\) Beri(A) + Kei; ({o\) Bei; (\)  (61a)
where o, are the roots of . .
M>(\) = Ber; ({M) Kei; (\) + Bei; ({oA) Ker; ()
I o) Yi(oulo) = Yola)i(de) = 0 (53) . .
ol Ni(oube) = Yoloh]i(ond — Ker| ({o\) Beiy (\) — Kei; (LoA) Ber; (\)  (615)
Because these roots are all real and positive [{Carslaw and oo
Jaeger, 1959], the corresponding essential singularities of Similarly,
Q(s) are located along the negative real axis. Hence G 1S N = Ny + iN 62
analytic for Re (s) = 0, except at s = 0, and the path of ) LT (62)
integration can be taken along the imaginary axis (&« = 0)  where
with a small semicircle T" of radius ¢ — 0 that excludes the ] )
origin. For that purpose, (51) is first rewritten in the form Ni(A) = —Kei, (§M) Ber (\) — Ker; (§oM) Bei (A)
exp (%sz) ; —ie . i . ie + Bei; ({M) Ker (\) + Ber, (Lox) Kei (V) (63a)
m =~ lim . .
Mmoo \ )= ie —ie Ny(\) = Ker; ({oA) Ber (\) — Kei, ({o\) Bei (\)
1 — Ber; ({A) Ker (A\) + Bei, ({o\) Kei (\) (63b)
- —exp [sT — ZQ(s)) ds (54) o
s Substituting (60) and (62) into Q(i7), making use of the
. . /2 o 12 . o .
Letting & — 0, it is readily shown that identity i"* = (1 + )/2"2, and simplifying yields
exp P ol Q67 = (@ + i)™ 64
Xp GPnl) 1o f —exp [sT — ZOs)] ds = 4 (55) (i) = (@ + i) (64
27 >0 —ie S
where
The first and second integrals of (54) can be combined by
first making the substitutions s = —irand s = ir, respective- s P.2yn'"(1 — PRA,
ly, and then taking the limit () = 3Pp" + - (65a)
1 x
. €Xp GPnZ) 1 . )
=54+ —F" — {ex T - ZQ)
T R At P,(2y)'"(1 — PRA,
0,(7) = BRP,,v + > (65b)
. L™ — 1
—exp [—itT — Z=inl} dr  (56)
Ni{(M, — M,) + No(M, + M>)
or A = (M, 22 22 1 2 65¢)
Cn =% +—exp GP,2) J Re {— exp [itT — ZQ(iT)]} dr
m 0 iT
Ni(M, + My) — No(M; — M)
57) A =———Z 2L 7T (6sq)

where Re indicates that only the real part of the argument is
needed (the imaginary part drops out). Next, the term Q(i7)
in (57) is simplified. To do this, we will make use of the
following relationships {McLachlan, 1961]:

Iy(xi"®) = Ber (x) + i Bei (x) (58a)
Li(xi'?) = —i Ber, (x) + Bei, (x) (58b)
Ky(xi'? = Ker (x) + i Kei (x) (58¢)
K, (xi'?) = i Ker, (x) — Kei; (x) (584)
Let us define X as ’
A= (r/yp'? 59

Using (46a), (585), and (584), the term M in (50) can now be
written in the form (note that s = ir)

M) = Lol K (NY2) = LYK (i)
= [—i Bery ({op\) + Bei, ({e\)] [ Kery (\) — Kei; (V)]
= [=iBer; (\) + Bei; (V)] [i Ker (LN) — Kei,; (LoM)]
=M, + iM, (60)

N+ Ny?

The square root function in (64) is evaluated by making use
of de Moivre’s theorem:

Ui = (r,)"? |:cos (g) + i sin G)} (66)

where
rp = Q7 + Q)" (67a)
6 = tan"' (Q,/Q)) (67b)

Using trigonometric equations, it is readily shown that

172
cos <g) = [%(1 + &ﬂ (684)
2 Ty
QO 12
sin <g> = [;( - —')} (68)
2 p
and hence
Qin) = 270, + Q)2 + i, — Q) (69)
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Using (69), the argument of the integral in (56) becomes

1
Re ,:.— exp (irT — ZQ(ir):I
ir

i 4 12 Z
Res—exp | - 217(5, + Q) cos | 7T — —
T .

21/2

(r, — Q])HZJ + i sin I:TT - 5127(,!7 - Ql)l/z”}

l—ex ~—Z—(r + Q" si T—i( - Q)"
;P iz Yp ! mn |7 212 \p TR

(70)

Finally, substituting (70) into (56) and letting 7 = y\%, we
obtain

S

2
cnlZ, T) =4 + = f exp 3PnZ — 7,Z]
T

0

. d\
- sin (YT ~ z,,2) ~ 71)
where
2z, = [5(r, + QI (72a)
Zn = [3(r, — QD2 (72b)

Note that the analytical solution above has the same struc-
‘ture as the solution derived by Rasmuson and Neretnieks
[1980] for convective-dispersive transport between spherical
particles.

Third-Type Input Boundary Condition

The analytical solution of (31)—(37) for the constant flux—
type boundary condition (equation (385)) will now be de-
rived. Using the same procedure as before, the Laplace
transform solution for ¢,, was found to be

P, exp BP..Z — ZQ(s)]
sBP,, + Q(s)]"?

EnlZ, 5) = (73)

where Q(s) is given by (50). Comparing (49) and (73), it is
apparent that (73) is related to (49) through the expression

£

Cm3(Z, sy = P, exp (P,,Z) f exp (~P,y)em(y, s) dy
Z

(74a)

where ¢,,; represents the Laplace transform solution for the
first-type boundary condition (equation (49)) and C,n3 TEpre-
sents the solution for the third-type boundary condition
(equation (73)). Equation (74a) also holds for the inverse
transforms:

o

Cm}(Z9 D = Pm exXp (PmZ) j’ exp (—PmZ)le(y’ T) dy

z
(74b)

Substituting (71) for c,,; in (74b) and integrating hence leads

directly to the solution for the third-type boundary condi-
tion:

exp (PnZ ~ 2,7)
3P + 2, + 2,3}

2P, [~
Cm(Z; T) = % + —
0

a

It

— Zpm COS (YN?T — Z,,,Z):’ ~

+ z,,) sin (YT — z,,2)

(75)

Because of conservation of mass, (75) is preferred over (71)
when concentration-distance curves in a semi-infinite profile
are considered. However, when (75) is applied to break-
through curves from finite laboratory soil columns or from
finite field profiles, it can be shown that the principle of mass
conservation will be violated [Brigham, 1974; Baker, 1977;
Kreft and Zuber, 1978]. From mass balance considerations
and using the same solution for the flux-type boundary
condition (equation (75)), it is possible to derive the follow-
ing general expression for the breakthrough curve, denoted

here by c,:
1 dc,
Ce(n = (Cm - _L)

The variable ¢, is known as the flowing concentration
[Brigham, 1974] or the flux concentration [Kreft and Zuber,
1978], as opposed to the in situ or resident concentration Crne
Substituting (75) into (76) yields exactly the same expression
as (71), evaluated at Z = 1 (z = L);

(76)

£

2
Ce(n:%"'—f
w

P, in (2T ) d\
exp | — — sin -~ Zm) —
. p 2 Zp Y g N

@7

A Single Macropore in a Radially Infinite System

A slightly different formulation of the transport equations
is necessary when the cylindrical soil mantle surrounding a
single macropore extends to infinity (b or {;, — ). The
transport equation for the macropore is now

IC, C,n J,

azc,,,
Rmh: m T U —

at az* 3z

(78)
7ra26f
where as before the subscript m refers to the cylindrical
macropore, while J, defines the solute flux from the macro-
pore into the soil matrix:

aC,
J. = —27mab,D, —— (79)
ar

r=a

In this formulation the macropore retardation factor R, is
best expressed in terms of the surface area of the macropore
wall, i.e., analogously to the formulation of Tang et al.
[1981]. The remaining equations are the same as before, i.c.,

oc, D, d dc,
R, = ——|r
at roor ar

for diffusion in the soil matrix, together with the internal

(80)
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boundary conditions R.D\*  26,DA
7 = 90d)

cmlz, 1) = calz, a, 1) (8la) a’R.D,, a*D,, 0
Ker \) Ker"(\) + Kei (\) Kei’ (A

s A= - KerQKer' ) « Kei o) Kei' 00 0

;—(z, o, 1) =0 (81h) Ker® (\) + Kei? (\)
Analytical solutions of (78)~(81) are given here only in terms A0 = Kei (\) Ker’ (\) — Ker (A) Kei’ (\) 90f)

of the original variables. The Laplace transform of (80) for an
initial condition of zero is

d*%é, 1dé,
._._+ J—
dr’ r o dr

which, when solved subject to boundary conditions (81a)
and (815) yields

R,s
__‘L.C-H:O
D,

(82)

Ca = Cp Ko(wir)/Ko(wia) (83)

where
oy = (R,s/D,)'"? (84)
Substituting (84) into the Laplace transform of (79) yields

) (85)

Jo = 2mwal,D v,
Ko(wa)

Using (85), the Laplace transform of (78) for an initial
condition of zero is

&é, v, dé,
dz? D, dz
R, 20D, R K
_ S + a( as) I(wla) =0 (86)
D, aD,.6r  Ky(wa)

For a first-type boundary condition similar to (384), the
solution of (86) is

1 U2
G2, 5) = —exp | —— — zd(s 87)
Cnlz, $) o eXp [ZDm ( )] (
where ‘
U Rus 20,DR.5)" Ki(wa) |2
d(s) = -+ 1 20DRas) T~ Ky, (88)
4Dm Dm aD,,,Bf Ko(wla)

Equation (87) is evaluated in the same manner as before.
Omitting details of the derivation, the complete solution was

found to be
(z,) =3+ 2 e
2, 8) = 3 +— exXp|{ — — z,2Z
mi R pv 2D, 7
N2D,t d\
sin | ————z,z|— (89)
a'R, A
where
z, = [3(r, + Q2 Zm = [%(rp - Q" (90a)
r = (QF + Q)" (90b)
2 20,DAAL°
Q] U + a H (90C)

4D’ @Dy

Ker? (\) + Kei2 (\)

Note that the solution above has the same structure as the
solution for the finite cylindrical soil mantle ((71) and related
equations).

Approximate Solutions for No Dispersion

When longitudinal dispersion in the macropore region is
neglected (D, — 0), and when again only a single macropore
in a radially infinite soil system is considered, the Laplace
transform solution for ¢, is

) 1 Rpsz  220,(DRus)'" Ki(wa)
Cmlz, 5) = —exp | — —

5 U abw,, Ko(wia)
91
which, when inverted, yields for ¢ > R,.zlv,
@ 1 N 2 (- 26,D \zA,°
clz, ) = —+ — exp|{ - ——
" 2 T Jo P a20fv,,,
. [N Dot — Rpz)  26,D,20A,° | di
- sin > - 5 -— 92)
a’R.v,, a“buw,, A

where A,° and A,° are given by (90¢) and (90f). Equation
(92) is not much simpler than the other solutions; and hence
there is little reason to neglect dispersion if the only purpose
is to simplify the mathematics. However, a useful approxi-
mate solution valid for small values of time can be obtained
by suitably approximating the modified Bessel functions K 1
and K, in (91). Using asymptotic expansions for K 1 and K,
valid for large values of s (e.g., those given by McLachlan
{1961, p. 221)), one can show that the ratio of the two Bessel
functions can be approximated by the series

Kix) 1 1 1 1

=ld o m b —— 93)
Ko(x) 2%

8x2  8x°
Using only two terms of this series, (91) reduces to

ZRmS 2ZB,,(DaRaS)V2 ZeaDa ]

1
Clz, §) = —ex -
(@ 5) K} P [ Up, abp,, azefvm
%94)
which yields the following appreximate solution for ¢,,:

culz, H =0 Ut = R,z

(95)

0Dz Bz DR, \"]
5 erfc
a‘6v,, abv, \t — Rpz/v,

Unt > R,z

cm(z, 1) = exp (—

Equation (95) has a form that is very similar to an exact
solution used recently by Grisak and Pickens [1981] to
calculate concentration distributions along a planar void in a
fractured medium.
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The above method for approximating c,, can also be
extended to obtain an estimate for the soil matrix concentra-
tion c,, the Laplace transform of which was given by (83).
To do this, Ko(x) for large values of x was approximated by
the series (see, for example, Olver [1970, equation 9.7.2.])

K()_/w 2 oL, 75 .
o= ‘\2x ¢ &  128:2 10240
96)

Substituting (96) into (83), carrying out the division, and
retaining four terms leads to

[ a\12 R,s\? ’
Ca=Cm|—| exp|—(r—a)
7 D,

where

b= (Da)l/Z | _i
" 8a(R)"? r

po- D, ; 2a . 9q? ©8)
2 1284°R, ro P
P - (D,)*? 59+ Ta N 9a> 754°
102403 (R, roo2 P
Substituting (94) into (97) gives
(a)”z ( ZR,s . 26,D, 1/2)
Ca=|—] eXp|———— 5 ——1q
r U a“6w,,
1 P] P2 P3
(s_ $72 s_z 5/2) 99)
where
2 OaD Ra 12 Ra 1/2
N £.7) (100)
a()fvm DH

Finally, inverting (100) gives the following approximate
solution for the soil matrix concentration c,:

Ca(za r, t) = 0

a\'? 0,D,z
Ca(27 r, t) =1 exXp | — > [2Pl - 7IP2
r a g,

2
: 7

+ (4t + 7HP3] exp ( - ——>
4,

. .
+ l:l - T[P] + ([1 + ?)Pz -7

7 7
i+ — Py erfc | —— H>0

H=0

(101)

where

ho=1t— (zZR,/v,) (102)

As with (95), (101) applies only when dispersion in the
macropore system is neglected and when the radial soil
matrix surrounding the cylindrical macropore extends to
infinity. In addition, the approximate solutions are valid only
for small values of time. Numerical experimentation with
(101) indicated that this equation gives accurate results for
the following condition:

D,t\/a*R, < 0.5 (103)

However, the solution diverges quickly when this condition

is not satisfied anymore. It was found also that little accura-
cy is lost when the higher-order terms containing P,, P, and
P3in (97) are neglected. In that case, (101) becomes simply

¢z, r, ) =0

a\'"”? 20.D, n
clz,r,t)=|—] expl-— 5 erfc T H>0
r av, 0 2(t)

(104)

Because of fewer approximations in its derivation, (95) has a
much broader range of application than either (101) or (104).
Some results illustrating the accuracy and applicability of the
approximate solutions are given later.

1= 1

NUMERICAL IMPLEMENTATION _

Numerical integration techniques were used to evaluate
the integrals of (71), (75), and similar equations in this study.
The integrands of these integrals consist of the product of a
decaying exponential function and a rapidly oscillating sinu-
soidal-shaped function, either a sine wave (equation (71)) or
a similar oscillating function (equation (75)). Because of the
generally rapid oscillatory behavior of the integrands as a
function of the integration parameter A, direct numerical
evaluation of the complete integrals using Gaussian quadra-
ture techniques often leads to inaccurate results, even with
an excessive number of integration points. Except for minor
differences in implementation, our method for evaluating the
integrals was the same as that used by Rasmuson and
Neretnieks [1981] for similar expressions dealing with radio-
nuclide transport between and into spherical aggregates. In
summary, each infinite integral is first replaced by a finite
series of finite integrals (1)) as follows:

M =

+ (105)

Nl—

Cm —

T

with

Ni+t
I = [ FQ\) dx (106)

£

i

where f(A) represents the integrand, A\, = 0, and \; (i > 1) are
consecutive positive roots of the integrand. The number of
terms 7 in (104) could be limited because of two consider-
ations. First, n was chosen such that A, is the first root for
which the exponential part of f(A\) becomes less than exp
{—20). Second, the number of terms could be limited greatly
by repeatedly averaging the partial sums of (105). By means
of an example, Rasmuson and Neretnieks [1981] showed
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that this method is extremely accurate and very efficient
when f(\) oscillates rapidly and numerous terms otherwise
would have been required to reach convergence. We refer to
the paper by Rasmuson and Neretnieks for a more detailed
discussion of this method using repeated averaging. Using
this method, the number of terms for most of our calcula-
tions could be limited to only 10, leading to answers that
have an accuracy of at least three significant digits.

Crucial to a correct evaluation of the analytical solutions
are accurate approximations of the modified Bessel func-
tions (Ky, Iy, K, etc.) and the different Kelvin functions
(Ber, Ker, etc.). For our calculations we used the polynomi-
al approximations of these functions as listed by Olver
{1970]. In addition, several simplified expressions for vari-
ous terms in A, and A4,° (equations (90¢) and (90f)) were
derived:

2 ” ) @ N
Ker*(A\) + Keir(N) =a"+ — — — + —
: 16 8 512
7\6
(7 + 40a + 1602 + 32) — (1074)
728
. i a A
Ker (A) Ker’ (\) + Kei (A\) Ket’ (A) = — — — -g—
X
A ) e
+ — (@ + Ra + 16a% + 22) — —  (107h)
256 ‘ 576
Kei () Ker' () — Ker (\) Kei’ (A) = — —
€l - € = — - —
J er er 1 T
)\3
(7 + 8 + 16a + 160) +
32
S5
— ——— (97 + 356 + 408a + 14447 (107¢)
27,648
where
a = In 2/\) — 0.57721566 (108)

(the last term of (108) is Euler’s constant). Use of the above
expressions leads to an accuracy of at least five significant
digits in A,° and A,° when X is less than 0.5. For A > 3, the
following approximations have a relative error of less than
1073

1
AN = Sl + 8y~ 16y* + 3136y%)  (109a)

21/2

TN

1
AL = Sl + 16y2 — 254y* + 3204y%)  (109b)

Finally, for relatively large values of [ and/or A, 4; and A,
are closely approximated by
A ~ 224,°0)

A0 ~2"24,°00) (110)

The relative error in these approximations is less than 1077
for LoA > 10. These last approximations were expected,

since the solution for the radially infinite soil matrix (equa-
tion (89)) forms a limiting case of the solution for the finite
soil matrix (equation (71)) when {; — . This can be
demonstrated by writing (71) and the related expressions of
this solution in terms of the original parameters. Using (26)—
{29) and the definitions of 6,, and 6,,, as indicated by (2) and
(3), one can express the solution for the radially finite soil
matrix also in the form of (89), (90a), and (90b), provided
that Q, and Q, are given by

Ui 2'29,.D,\A,

0

= + 111
4D,? a’D.,,, 0 (111a)
_R.DN 2'D,g\A, (111)
" @R.D,,  aD,4

For the limiting case when {,— = (b — %), these equations
should reduce to (90¢) and (90d), thus validating the approxi-
mations given by (110).

ExXAMPLE

The exact and approximate solutions presented in this
study deal with solute transport through large cylindrical
macropores with simultaneous diffusional exchange of mate-
rial between the macropores and the adjacent soil matrix.
Conceptually similar analytical solutions for macropore
transport with simultaneous matrix diffusion were presented
earlier by Rasmuson and Neretnieks [1981] for solute trans-
port between spherical aggregates, by Pellerr [1966] for
transport between solid cylindrical structures, and by Tang
et al. [1981], Grisak and Pickens [1981], and Sudicky and
Frind [1982} for movement through rectangular voids. Calcu-
lated solute distributions presented in those papers clearly
demonstrate the important effects of various system parame-
ters (U, D, D,, aggregate size, and void width) on solute
transport. Although our study deals with different soil struc-
tures, qualitatively similar effects of various system parame-
ters on transport can be demonstrated also for cylindrical
macropores. It should be noted that a number of sensitivity
analyses for the closely related mobile-immobile type trans-
port models have been documented also, notably by Viller-
maux and van Swaaij (1969], Thackston and Schnelle [1970],
van Genuchten and Wierenga [1976), Vachaud et al. [1976],
and van Genuchten and Cleary [1979]. Consequently, we
will not duplicate previously published discussions of the
effects of various parameters on transport; the reader is
referred to the other papers for such a discussion. Instead,
only one example will be given here to illustrate the effects of
neglecting dispersion in the macropore region and also of
assuming a radially infinite rather than finite soil matrix
surrounding the macropore.

Figure 2 shows calculated breakthrough curves for a 40.4-
cm-long porous column that contains a straight cylindrical
macropore of radius 0.073 cm. Except for an estimate for the
dispersion coefficient, all parameter values used for this
example are the same as those determined experimentally by
De Cockborne [1980] in a study of nitrate movement through
artificially constructed laboratory soil columns. These ex-
periments, along with a number of theoretical predictions,
will be discussed in a forthcoming paper. While the effect of
dispersion on the general shape of the curve is clearly visible
at early times, Figure 2 shows that at later times it is
extremely small or nonexistent. For this example, an arbi-
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Fig. 2. Calculated breakthrough curves for nitrate movement
through a 40.4-cm-long porous medium containing a straight cylin-
drical macropore.

trary value of 1 cm for the dispersivity was assumed, thus
making the dispersion coefficient numerically equal to the
macropore water velocity (see Figure 2). This value of 1 cm
is somewhat less than the 4 cm used by Grisak and Pickens
[19805, Figure 8] to describe chloride breakthrough data
through fractured clayey till material.

Approximate solution (95) was found to generate essen-
tially the same results as the solution for negligible disper-
sion in the macropore region (i.e., the same as the dashed
curve in Figure 2). Some small deviations of the order of
about 0.01 to 0.03 relative concentration units between the
approximate solution and the exact solution for a radially
infinite soil matrix were present between t = 50 and ¢ =
20,000 min. Therefore approximate solution (95) provides a
simple, accurate, and extremely useful tool for studying
solute transport through cylindrical macropores.

"The exact solutions for a finite (¢ = 1.18 cm) and an
infinite (b — ) soil matrix were found to generate exactly
the same breakthrough curves until ¢ reached a value of
about 500 min (results given by the solid curve in Figure 2).
This duplication of the results could have been expected also
when considering the radial concentration distribution in the
soil matrix, plotted in Figure 3 for various values of ¢. The
dashed curves in this figure were calculated with the approx-
imate solution discussed earlier (equation (104)), whereas
the solid curves were obtained with an alternative approxi-
mate solution that will be discussed later. Figure 3 clearly
shows that no influence of the outer boundary at r = 4 on the
radial concentration profiles is present until ¢ reaches a value
of about 500 min. Hence similar effects of the outer bound-
ary on solute distributions in the macropore should not be
present until that time.

From Figure 2 it is evident that the shape of the break-
through curve for no dispersion is roughly that of a step
function, being zero until 1 = ¢, while for r > t; the
concentration remains fairly constant at about 0.9 as predict-
ed with (95). If we assume that c¢,(z, 7) indeed remains
constant for ¢ > ¢;, then we can use this information to fix
boundary condition (81a) and solve the radial diffusion
equation for the soil matrix without having to consider the
direct coupling of that equation with the transport equation
for the macropore system. Thus the problem becomes to
solve (80) subject to (814) and the condition

cfz,a, 1) =0
(112)
ez, a, ) = ¢,%z, 1)

]

08
06 1

04

02

RELATIVE CONCENTRATION, c,

log (-5

Fig. 3. Radial concentration distributions at z = 40.4 cm for

different values of r.

where ¢,,%(z, 1) is given by (95) and further assumed to be a
constant in the solution process. The solution of this prob-
lem is

clz, r, ) =10 t=<t

(113)

cdzr, )= ¢,z DB, 1)) 1> 1,

where

B(ra tl) =1- ™ E €Xp (_ D(lanztl/Ru)le(anb)

n=1
J (114)
and where «, are the roots of

JO(ana) Yl(anb) - \]](anb) YO(ana) =0

. JO(anr) YO(a‘na) - YO(anr)JO(ana)
le(anb) - Joz(ana)

(115)

Hence (113) describes radial diffusion from a hollow cylindri-
cal pore into a finite soil mantle, subject to a constant
boundary condition imposed at the pore wall. The solution
given here is a simplification of a more general solution given
by Crank {1956, p. 80].

The solid curves in Figure 3 were obtained with (113)
while using (95) for ¢,.2(z, £). Note that for small times this
solution generates approximately the same results as the
much simpler solution (104); this verifies the applicability
and relative accuracy of (113). For times greater than about
30 min, (104) becomes invalid, and only (113) can be used to
obtain estimates for the radial concentration distribution calz
r, 1). Rather than (95), one of the more complete solutions
(71), (75), or (92) could have been used also for ¢z, D) in
(113). However, this will not lead to significantly different
answers, at least for the parameter values used here. It
should be noted that the series solution (113) requires a large
number of terms when ¢ is small. For example, about 10 to 40
terms are needed to obtain an accuracy of about 0.001
concentration units when ¢ is less than 30 min in our
example. For r > 100, however, only one to three terms of
the series are required.

SUMMARY AND CONCLUSIONS

This paper presents several exact and approximate solu-
tions of the equations describing convective-dispersive sol-
ute transport through large cylindrical macropores with
simultaneous radial diffusion from the macropore liquid
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phase into the surrounding soil matrix. Analytical solutions
are presented for both a radially finite and a radially infinite
soil matrix. By means of an example, it is shown that at early
times little accuracy is lost when the radially finite soil
mantle is replaced by an infinite system. For at least one set
of system parameters, a simple approximate solution for the
concentration in the macropore liquid phase was found to
give an excellent approximation of the more complicated
exact solution. This approximate solution ignores dispersion
in the macropore system and also assumes that the soil
matrix surrounding the macropore extends to infinity.

All exact solutions given in this paper pertain to concen-
tration distributions in the macropore system. In addition,
two approximate solutions are given that can be used to
estimate temporal and radial concentration distribution with-
in the soil matrix itself.

NOTATION

a radius of cylindrical macropore.

Ay, Ay see (65¢) and (65d).
A A% see (90e) and (90F).
b outerradius of soil mantle surrounding macro-
pore.
Ber,, Bei,, Ber,’, Bei,’ Kelvin functions (v = 0, 1).
B see (114). )
¢, relative concentration of soil matrix liquid
phase.

Cin  average relative concentration of soil matrix
liquid phase.

¢n  relative concentration of macropore liquid
phase. :

Cml> €3 analytical solutions of ¢, for first- and third-
type input boundary conditions, respectively.
€4 Cim» ¢, Laplace transforms of ¢, ¢;,, and c,,, respec-
tively.
Ci, C;  constants in (41).
Co, C;  input and initial concentrations, respectively.

C, local concentration of soil matrix liquid phase.
Cin average concentration of soil matrix liquid
phase.
C..  concentration of macropore liquid phase.
D,  soil matrix molecular or ionic diffusion coeffi-
cient.
D,,  dispersion coefficient of macropore region.
f» - mass fraction of all adsorption sites associated
- with the macropore region.
Iy, I modified Bessel functions.
;i see (106).
Jo, Ji  Bessel function of the first kind.
k  average distribution coefficient of soil system.
k,  distribution coefficient for bulk soil matrix.
Ker,, Kei,, Ker,’, Kei,’ Kelvin functions (v = 0, 1).

km, ki, distribution coefficients for mobile and immo-
bile regions, respectively.
Ko, K;  modified Bessel functions.

L column length or profile depth.
M, N  see (46a) and (46b).
M, M, see (61a) and (61b).
n  number of terms in (105).

Ny, N,  see (63a) and (63b).
n,  number of macropores per unit cross-sectional
area.
Py, P,, Py see (98).

P,, column Peclet number.
q  volumetric flux density.
r  radial coordinate.
r, see (67a).
R total retardation factor.
retardation factors for bulk soil matrix.
R,, retardation factor of macropore region.
s Laplace transform variable.
local and average adsorbed concentration of
bulk soil matrix, respectively.
S,»  adsorbed concentration of macropore region.
t  time.
t;  adjusted time (see (102)).
T dimensionless time (pore volume).
Un  average fluid velocity through macropores.
volume fractions of macropore and micropore
regions. ‘
x  dummy variable.
y  integration variable.
Bessel functions of the second kind.
z  distance.
see (72a) and (72b).
Z= z/L.
a see (108).
a, roots of (115).
B see (29a).
v " see (29b).
€ limiting constant in (54).
{=rla:
C() = bla. )
see (100).
total volumetric water content, equal to 6,, +
O
mobile and immobile water contents, respec-
tively.
local volumetric water contents of the micro-
pore and macropore regions, respectively.
N integration variable.
A;  values of X for which the integrands of (71),
(75), or (98) become zero (A, = 0).
p soil bulk density.

Pa» pr local bulk densities of the micropore and ma-
cropore regions, respectively.
Pms Pim  se€ (13).

o, roots of (53).
T integration variable.

S, Gim  sSEE (4).
o see (88).
w see (42).
o see (84).
Q  see (50).
(A, £, see (65a) and (65b) or (90¢) and (90d).
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